

Audio Engine Design Document - GDSoundEngine

 by Kerwin Ghigliotty Rivera

Contents
High Level Overview .. 3

How it works: .. 4

Files, Voices and XAudio2 .. 5

Sound and Playlists ... 7

Callbacks ... 9

Printing .. 15

Design patterns used for this project ... 17

Singleton – (Managers are singleton instances) ... 17

Command with Timer Event Manager .. 19

Strategy – (Commands, Custom Callbacks fit this pattern) .. 20

Object Pooling – (Managers and Double Linked Lists) .. 21

Template Pattern – (For Managers and their derived implementations) ... 22

Post-Mortem ... 23

High Level Overview

The goal of this project is to create an Audio Engine derived from Win32’s XAudio2 called

GDSoundEngine.

The user would be able to Load a particular playlist and perform any specific command on it (Play,

Pause, Stop, Raise/Lower Volume, etc). This should be accomplished with the use of an audio thread, as

well as a File thread and a Helper thread.

As of this iteration, the following actions are initiated on the Game (main) thread and passed onto the

Audio thread as part of commands:

• Load Files – Calls a derived version of Win32 File functions called FileSlow, which simulates slow

loading. The command to load files is then delegated to the File thread for loading, we can use

this in two different ways:

o Blocking – The game thread is stopped until the audio finishes loading, an internal

callback is then passed from Audio to Helper thread and when the audio finishes this

gets triggered and the blocking exits.

o Asynchronous – The game thread continues and if the user specifies a LoadCallback this

will be passed onto the Game thread to let the user know when the load finishes.

• LoadPlaylist – Creates a Playlist Reference node in the PlaylistRefManager, this makes it

available to be instanced with the Add command.

• AttachVoice/Command – Attaches a Voice or Command to the specified Reference playlist

• StartPlaylist – Sends the commands of the playlist to the TimerEventManager to begin execution

of all the attached commands.

• Play – Starts the playback of the main voice.

• Pause – Pauses the playback of the main voice.

• Stop – Stops playback of the main voice.

• Raise/Lower Volume – Raise or lower the volume by a set default value.

• Set Volume – Sets the volume to a specified amount.

• Raise/Lower Pitch – Raises or lowers the pitch by a set default value.

• Pan Left/Right – Pans the audio towards the left or right channel.

• Set Pan – Sets the pan to a specific value [-1,1].

How it works:

Instructions are sent to CircularQueues, these CircularQueues represent their respective threads, for this

engine we need four specific threads that are initiated on detached mode:

• Game thread (or Main thread) – This thread by nature will control the GDSoundEngine which

handles the Sound and Queue managers.

• Audio thread – this thread handles all the audio actions as well as handle the delegations to the

File and Helper threads. It oversees the ASound, Voice, TimerEvent, Playlist and PlaylistRef

managers.

• File thread – this thread performs the load operations and takes care of the File Manager.

• Helper thread – this thread performs the update to internal tables, File table as well as Priority

table.

GDSoundEngine sends instructions to the queues associated with these threads and these threads are

all managed by the QueueManager. This QueueManager handles the initiation of these threads as well

as their shutdown. The instructions sent by the GDSoundEngine are then consumed by the threads and

disposed of.

Threads Being launched Thread Spinning

(This is part of the GDSoundEngine)

The threads spin until the exit flag is turned, this is done by executing the GDSoundEngine::StopEngine()

method. In the meantime it is consuming the elements from the CircularQueue which is the Queue

specified with QueueManager::Add(CircularData::Name::AUDIO), after being consumed they can be

disposed of and so we call their destructors.

Example of Manager Setup

(Audio Thread)

Files, Voices and XAudio2
Before we can start playing our sound files, we first need to load them, GDSoundEngine takes care of
that in two ways:

• Synchronous Load (Load Blocking) – This type of loading will block the main thread from

continuing, this is useful in the case of preload, when you need to load assets before

proceeding.

• Asynchronous Load (Load Async) – This type of loading will let the thread continue and will

notify the user when it is finished loading by using a user created custom GDLoadCallback,

useful for loading in the background.

The different load types differ in a small way but otherwise perform the same function, which is to

create a File node in the File Manager and update the Wave Table from Pending to Ready.

This happens in 5 steps (in the case of Asynchronous Loading)
1. User calls the LoadFileAsync call on the SoundManager

a. This checks on the game thread if the WaveID we want to load is already in the
WaveTable with a Ready or Pending status, if it is then it just sends the UserCallback to
the Helper thread which marshals it back to the Game thread, if it is not there then it
sends the LoadAsync command to the audio thread.

b. If it does not exist in the table, it sends the LoadAsync command to the Audio thread.

2. The LoadAsync just creates the LoadFile Command (This is used in both Blocking and Async
except that in Async a UserLoadCallback is added) and sends it to the File thread to be
processed

3. The LoadFile command Adds the WaveID to the WaveManager (FileManager in this case) and
attaches the UserCallback in the call

4. The Add method creates 3 commands while also initializing the WaveFile and setting the entry
as Pending in the WaveTable

a. SetFileToReadyCommand which just Adjust the table entries with Ready status (this is
sent to the Helper thread)

b. PassToGameCommand this just tells the Helper thread to send it back to the Game
thread for execution (this is needed to guarantee ordering, we don’t want to set it to
ready before Executing the callback) (this is sent to the Helper thread)

c. RunCallbackCommand which executes any callback that it is passed to it
(UserLoadCallback or InternalCallback) (this is passed as a parameter to the
PassToGameCommand)

5. The UserCallback executes its LoadMethod in the Game thread and if the user wants to execute
some specific code, then they can override the Load method since it is a virtual function on its
derived class GDLoadCommand

Since the WaveTable is mutex protected it guarantees that only one thread can access it at a time.

As for the Files (WaveFiles), these are objects that have a pointer to a WAVEFORMATEXTENSIBLE(wfx) as

well as a pointer to an XAUDIO2_BUFFER(buffer), these values get populated by calling the

GDAudio::LoadAudioFile method, it reads through the wave file’s content and finds its fourccFMT chunk

then loads it into the wfx, and then looks for the fourccDATA and loads that into the buffer.

This data lives in the FileManager, and when we need to use it we can create a Voice object, when

creating this object we specify what File it is going to be attached to, this object will then create a

IXAudio2SourceVoice which will consume the buffer and wfx from the WaveFile.

Sound and Playlists
Sound Creation looks like this:

When we create a Sound object, we also create its respective ASound object, this is an object that lives

on the Audio thread side this makes it faster to access this object for any operation. Whenever we

perform any operations on the Sound object it sends a command to the Audio thread and then accesses

the ASound directly, it does not perform operations on the ASound from the Game thread, we want

these functions separated to not cause thread issues.

As for playlists

The way that playlists work is that, given a playlist object with a particular name (SoundBase::Name) we

can attach voices (Sound Files in WAV format) and attach commands, these voices will play one after the

other. The minimum voices needed is one, while there is no limit for the maximum (so far).

LoadPlaylist(SoundBase::Name) this will create a playlist on the Playlist Reference Manager, whose

purpose is to have the playlists readily available for consumption by other sound objects, whenever we

need to create a sound with that playlists it just creates a copy of it, this is to allow instancing.

Creating the playlist on the PlaylistReferenceManager

Attaching voices is as simple as specifying which SoundBase::Name we want to affect and the

WaveFile::Name we want to add.

Attaching commands is more complicated, it requires the SoundBase::Name we want to add it to, the

Time in millisecons, and the command we want to add. If the command requires a set value, like the

SetVolume or SetPan command then the next value is a float value, the last value is a tag to specify if the

command gets repeated, if so, it will retrigger itself in the same time interval specified.

In order to create a Sound object we first need to load the playlist (this will be replaced with a serialized

object at a later point but for now we are creating the playlists ourselves) and then we simply call the

GDSoundEngine::AddBlock or AddAsync and specify the same playlist name we used in the example

above. This will copy the playlist from the Playlist Reference Manager into the PlaylistManager and will

link it to the particular Sound object.

AddBlock will make the sound available immediately for use while AddAsync creates it while the thread

continues, if you need to use the sounds later and not immediately then Async is recommended.

Calling the StartPlaylist method on the Sound object created will trigger the PlaylistStart command, this

will send all the commands to the TimerEvent Manager to be executed. The int value specified is

optional and it specifies the priority in which it will be played.

The way priority work is, the lower the number the higher the priority, if the PriorityTable is filled and

the user tries to playlist then it will check if there is a value it can replace (one with lower priority, if

there are lower priority entries then it will look for others with its same priority and replace the one that

has been playing the longest). This system is to prevent too many sound effects to play at the same time

since we set a limit on the number of sounds playable.

Callbacks

GDSoundEngine supports 4 different types of callbacks

InternalCallbacks – These are callbacks used for Blocking loads, they simply turn the done flag true when

the task is finished allowing the thread to continue working.

Here the process spins

indefinitely, when it is finished

the Internal_Callback’s Execute

function is called, turning the

flag to true and exiting the

loop.

GDLoadCallbacks – These are callbacks used for Asynchronous loads, these are specified by the user

directly, by deriving from the GDLoadCallback we are using the strategy pattern, the engine will then run

the Load function derived from GDLoadCallback and execute the user’s code in the Game engine, this

way, we ensure the threads are unaffected by the user’s code.

Example of user created code:

Note: The Files, Voices and XAudio2

 section shows the full flow of

Asynchronous loading.

As for GDSoundCallbacks

When we create a Sound object (using GDSoundManager’s AddBlock or AddAsync) we can attach a user

callback to it, this will trigger a AttachUserCallback command and pass that onto the pASound of the

respective Sound object. With this callback attached, when the XAudio2’s OnStreamEnd method is

called it will create the RunCallback method if there is a user callback attached and will send that

callback to the Game thread to be executed.

The execution depends on what the user implemented, the custom callbacks are derived from

GDSoundCallback and they can override the method they want to execute (they are set to virtual

optional) and by setting the type they want it to be the callback’s method is executed (this is

functionality I would like to upgrade in the future). In the example above since the

UserSoundCallback_Custom implements the End method and it is CallbackType::END then when the

RunCallback command is executed it will look for that type and call the End method, and since this

command is sent to the Game thread, the user will see it directly.

Lastly VoiceCallbacks

VoiceCallbacks are derived from IXAudio2VoiceCallback and they simply notify us when certain events
occur in the XAudio2 thread, the same way we implement our own callbacks.

It will notify us when the following actions have occurred:

• OnBufferStart – When the source voice is about to process a new buffer data.

• OnBufferEnd – When the source voice is finished processing the buffer data.

• OnStreamEnd – When the source voice has finished playing.

• OnVoiceProcessingPassEnd – When the processing pass for a voice is finished.

• OnVoiceProcessingPassStart – When the processing pass is about to start, this is used for
optimal feeding off data before starvation.

• OnLoopEnd – When the source voice loop has finished.

• OnVoiceError – When there is a critical error while processing the voice.

These methods are triggered on the XAudio2 thread, so in our case, to free that thread from any major
work we delegate anything it needs to do to other threads, and in the case of UserSoundCallbacks we
can send those callbacks directly to the Game thread to be processed.

In the sample used above, if the sound playing ends, it will check if there is another voice in the playlist
and play it (this is functionality I would like to change in the future to make it so that I can assign the
callback myself if I need to) and if there is a custom callback added it will create a RunCallback command
and send it to the Game thread to be executed.

WaveTable and PriorityTable

GDSoundEngine uses two different of tables in its lifecycle, the WaveTable or FileTable and the

PriorityTable.

WaveTable consist of keeping a record of all the active Files available and their status, they could be

Pending if the command to load has been sent but it has not finished, and Ready when the file is stored

in the FileManager.

Note: The full flow of the WaveTable update is shown in the Files, Voices and XAudio2

 section

When the user decides to remove a file from the system then they can do so by calling the UnloadFile

method.

When the user calls the UnloadFile and specifies the WaveID to remove, it creates a

RemoveWaveCommand and sends it to Audio thread since this is the thread that handles the WaveFiles

(not their loading but their usage), The RemoveWaveCommand just checks that the WaveID returns a

valid WaveFile and creates a SetFileToEmptyCommand which sends to the Helper thread, this command

will update the table. At the same time the RemoveWaveCommand is removing the WaveFile from the

WaveManager (FileManager in this case).

The SetFileToEmpty just calls the EmptyFile method on the WaveFile’s WaveTable entry.

I decided to go with this approach rather than go through the WaveTableManager because the Table is

not mutex protected but the WaveTable entry is. The EmptyFile method just calls the privUnload

method on the WaveTableManager which sets its id to nullptr, its status to Empty and its Name to

Uninitialized.

As for the PriorityTable

Say your player is in a scene, it’s a sunny park and there are lots of people talking, birds
chirping, cars driving around, weather effects, etc… It might be overwhelming to the player to
have to listen to all these sound effects at once, and so the priority table helps us cull sound
effects based on their priority. The lower the number the higher the priority.

When triggering Sound::StartPlaylist, the sound object creates a PriorityStart command, which
is sent to the Helper/Aux thread. This is to check that the entry can be added into the table
first. If there is no space for the entry and there is no element to replace then it will not trigger
the PlaylistStart command. Thus, the sound is never played.

This PriorityStart command simply calls the PriorityManager::Play_Sound(Sound*) method
which handles the table update.

To add it to the table it needs to do the following:

• Check for an empty space, if it finds it then it updates that entry with the details of the
sound we are about to play then triggers the PlaylistStart command

• If there is no empty space, check for the lowest priority and replace that, then triggers
the PlaylistStart command

• If there is no empty space, and there is no priority lower than the new one, check for
priorities of the same level, and replace the one with the highest playtime.

• If it does not find an entry with a higher priority than itself then it skips the play

When the new sound replaces another, it stops that sound first, sets its internals to Killed and
then replaces that entry with the new one and plays.

The Priority Manager is protected by a handle/mutex system, the Play_Sound method has a
mutex, so it locks the access, adds the sound to the table then plays it and releases the access.
The StopAll and RemoveSound methods have this mutex as well since they are updating the
table.

Printing
The GDSoundEngine has 2 methods for printing, PrintTable and Print Managers, PrintTable will Print the

contents of the specified table

As part of PrintTable there are two options PrintTable and PrintTableDelayed

PrintTable will print out the contents on the Output window immediately, while PrintTableDelayed will

send a command to the Helper thread and have it printed, this ensures that the result is printed after

any other instruction sent to the Helper thread (ensures ordering), you can tell it is being printed at the

Helper thread due to the since our printing method is thread aware.

Example of resutls

FILES (Index, Pointer, Name, Status)

PRIORITY (Index, HandleID, Name, Status, Priority, Playtime)

As for the PrintManager, the FILES tag specifies to Print out the File Manager and the SOUND tag

specifies to print out the Sound and the ASound manager, these will also print out the contents of the

playlist.

FILE SOUND

These are printed as part of SoundManager Print as well

Design patterns used for this project

Singleton – (Managers are singleton instances)
UML DIAGRAM

This is achieved using Scott Meyer’s Singleton pattern

General

The basic idea of the Singleton pattern is to streamline the use of a class to a single instance, this is used

with all the Managers in this project.

The main thing to note is for singletons their constructors are private so if we want to use this pattern

the user needs to call the Initialize method, which will create an instance of the class and store it within

itself, if the user tries to call the Initialize method again then we check if there is an instance already

created, if there is, we ignore this request (or show error if we needed to), however by making sure that

all crucial calls to the manager call the initialize function we guarantee that the user will not use the

Manager without creating an instance.

The Problem

The problem that we face with this pattern is that what if we had multiple scenes and each scene

required an independent version of this singleton? Well in that case we would have to make some

adjustments to our singleton, we have to make our constructor not private and then we add another

instance of itself. Whenever we need to use this for a particular scene, we just create a separate

instance of the class and set it as active while we are in that scene, if we switch scenes, we switch the

active instance.

The benefit of this pattern

It is handy to keep track of only one instance of the class rather than having to create a variable for one

and using that as a global variable, everything we need from the class is already static, and so all the

methods are available to us.

This makes it so that everyone has access to the same instance rather than everyone creating their own.

Command with Timer Event Manager
UML DIAGRAM

General

Commands are objects that execute their functions at a given time, we use them in conjunction with our

Timer Events.

The design consists of an abstract Command class with an Execute method, then all our different

Commands can use it to execute their functions as part of our Timer Events.

The Problem

The main problem with these types of behavioral patterns is that if we don’t necessarily know what gets

executed as all the command types have an Execute method.

The benefits of this pattern

This is the working force behind our engine, everything is set on timers and commands, this is how we

are sending the instructions from one thread to the next.

Strategy – (Commands, Custom Callbacks fit this pattern)
UML DIAGRAM

General

The main idea is to define algorithms related by type (in this case our Commands fit that pattern as well)

and we just extrapolate all the main functions into abstract classes in the main class, and all it is all taken

care of by its subclasses.

This pattern is very similar to the state pattern but in the case of state pattern we just switch the state

objects, and the functionality is taken care of, but here we are pretty much subclassing with different

takes on the abstract methods depending on the use.

The Problem

To change the behavior of a class you would need to create a different object.

The benefits of this pattern

Our commands implement this pattern to some degree, they are all children of a base class and the way

its abstract methods are created means that all the subclasses can use these methods with their own

twist. In the case of our Custom Callbacks, regardless of their implementation they are derived from the

GDSoundCallback and GDLoadCallback, and as such they need to implement certain functions. The user

must provide one and if they decide to just not do so then the default behavior will trigger which is just

an empty function, if they implement their own version then that will be executed instead.

Object Pooling – (Managers and Double Linked Lists)
UML DIAGRAM

General

This pattern consists of creating two separate pools, one active and one reserve, these pools work

together tightly, whenever we create any objects we just take from the reserve and add it to active then

we can initialize that element as we see fit, whenever we are done with the elements we can remove

them by adding them back to the reserve list and washing them of any data, then they get recycled

again when new objects are needed.

It will also grow in size depending on how many elements are needed, if there are not enough elements

in the reserve list then it will simply add more and use those.

The Problem

This pattern brings one problem, and it is that no object ever gets destroyed so no memory is freed, it’s

all kept in reserve pools.

The Benefit in this case

The files and playlists are always kept in the manager whenever the user needs them, no need to re add

them.

Template Pattern – (For Managers and their derived implementations)
UML DIAGRAM

General

The Template design pattern allows for a parent class to have some methods implemented and the child

classes could use these derived methods and implement their own version based on their needs.

The Problem

The need for this pattern arises at the fact that if we had multiple classes with the same functions

except one or two steps then we could just have a base class have the basic skeleton of the process and

the child classes can use them in their own way.

The benefits of this pattern

Once we turn all our methods into steps then we can extrapolate each and use what we need then the

rest could be on the child classes.

Post-Mortem

Without a doubt this was one of the most technical projects I have ever worked on, I think

working on the Final Fantasy Demo beats it since it had more moving parts, this was more concentrated

on one task, “Play a Sound and Play it Properly”. I had to do quite a bit of research and still am, in which

case this document may undergo some updates.

Good documentation is undervalued, having documentation that is well written and detailed

makes the process or wrapping an existing systems to suit your own needs easier. It was while going

through the process of wrapping the Win32’s File system that it became an arduous task just to keep up

with it and it was a bit confusing, same thing happened while wrapping the XAudio2 system to create

this audio engine. I believe that there is merit to writing a documentation that is technical, as you

cannot really create a document that solves the user’s problem. But you can guide the user to the

possibilities once they get passed that first hurdle.

The ability to wrap an already existing class into your own version of it should not be taken

lightly either, like using different connectors for an appliance but you don’t have the necessary cable to

wire them, you use an adapter to finish the connection. This is basically what we are doing, instead of

taking the complicated base “vanilla” code we are simply creating an adapter we can later use to

simplify our development. Had we not had these handy getting to where we are now would’ve been

extremely difficult to follow.

Large systems like the graphics system need to be disassembled before we work on them, if we

want to work on it, we will want to know a few things:

• Can its features be separated into small components?

• Can we reuse these components and how viable it would be to refactor these to suit our needs?

• Given that we are working on it on a per week basis, would the core functionality need more

refactoring in the future?

For the audio engine our task was simple, we need to associate a file in wav format to a voice

that will use XAudio2 to consume its buffer and play. Something as simple as that led to this system.

Wrapping XAudio2, Win32’s File system, creating Managers to hold our data, Queues to spin our

threads, then delegating instructions to each. That also meant that since we have threads, we have to

protect ourselves, and so mutex was introduced.

When we were first introduced to the sound engine concept we were pretty much put in the

shoes of a new engineer, no experience whatsoever and we were given an API to understand bit by bit

and use it. The way that I handled this was basically to read the code carefully, take my time with it,

then work on top of it, if there were things, I could use in a different way would take some liberties in

modifying it.

Regardless, I do thank DePaul for giving me the opportunity to work on this project and inspiring

me to continue its development even after class had finished. Which led to this document. And thank

you reader for taking your time to go through my experience in creating the GDSoundEngine (First true

pass of it)

